10最好的数据工程教程推荐

"This post includes affiliate links for which I may make a small commission at no extra cost to you should you make a purchase."

特写 iPhone,显示 Udemy 应用程序和带笔记本的笔记本电脑有数以千计的在线课程和课程可以帮助您提高 数据工程 技能并获得 数据工程 证书。

在这篇博客文章中,我们的专家汇总了 10 个精选列表 最好的 数据工程 课程, 现在在线提供的教程、培训计划、课程和认证。

我们只包括那些符合我们高质量标准的课程。我们花了很多时间和精力来为您收集这些。这些课程适合所有级别的初学者、中级学习者和专家。

以下是这些课程以及它们为您提供的内容!

10最好的数据工程教程推荐

1. “Data Engineering Essentials using SQL, Python, and PySpark” 经过 “Durga Viswanatha Raju Gadiraju, Asasri Manthena” Udemy课程 我们的最佳选择

“Learn key Data Engineering Skills such as SQL, Python and PySpark with tons of Hands-on tasks and exercises using labs.”

截至目前,超过 40151+ 人们已经注册了这门课程,而且已经结束了 1297+ 评论.

课程内容
“Introduction about the course
Getting Started with ITVersity Labs for Data Engineering Essentials on Udemy
Setup Environment to learn Python, SQL, Hadoop, Spark using Docker on Windows 11
Setup Environment to learn Python, SQL, Hadoop, Spark using Docker on Windows 10
Setup Environment to learn Python, SQL, Hadoop and Spark using Docker on Mac
Setting up Environment to learn Python, SQL as well as Spark using AWS Cloud9
Networking Concepts for Beginners – ip addresses and port numbers
Database Essentials – Getting Started
Database Essentials – Database Operations
Database Essentials – Writing Basic SQL Queries
Database Essentials – Creating Tables and Indexes
Database Essentials – Partitioning Tables and Indexes
Database Essentials – Predefined Functions
Database Essentials – Writing Advanced SQL Queries
Programming Essentials using Python – Perform Database Operations
Programming Essentials using Python – Getting Started with Python
Programming Essentials using Python – Basic Programming Constructs
Programming Essentials using Python – Predefined Functions
Programming Essentials using Python – User Defined Functions
Programming Essentials using Python – Overview of Collections – list and set
Programming Essentials using Python – Overview of Collections – dict and tuple
Programming Essentials using Python – Manipulating Collections using loops
Programming Essentials using Python – Development of Map Reduce APIs
Programming Essentials using Python – Understanding Map Reduce Libraries
Programming Essentials using Python – Basics of File IO using Python
Programming Essentials using Python – Delimited Files and Collections
Programming Essentials using Python – Overview of Pandas Libraries
Programming Essentials using Python – Database Programming – CRUD Operations
Programming Essentials using Python – Database Programming – Batch Operations
Programming Essentials using Python – Processing JSON Data
Programming Essentials using Python – Processing REST Payloads
Understanding Python Virtual Environments
Overview of Pycharm for Python Application Development
Data Copier – Getting Started
Data Copier – Reading Data using Pandas
Data Copier – Database Programming using Pandas
Data Copier – Loading Data from files to tables
Data Copier – Modularizing the application
Data Copier – Dockerizing the application
Data Copier – Using custom Docker Image
Data Copier – Deploy and Validate Application on Remote Server
Validate ITVersity Hadoop and Spark Cluster (for ITVersity lab customers)
Setup Single Node Hadoop and Spark Cluster or Lab using Docker
Introduction to Hadoop eco system – Overview of HDFS
Data Engineering using Spark SQL – Getting Started
Data Engineering using Spark SQL – Basic Transformations
Data Engineering using Spark SQL – Managing Tables – Basic DDL and DML
Data Engineering using Spark SQL – Managing Tables – DML and Partitioning
Data Engineering using Spark SQL – Overview of Spark SQL Functions
Data Engineering using Spark SQL – Windowing Functions
Apache Spark using Python – Data Processing Overview
Apache Spark using Python – Processing Column Data
Apache Spark using Python – Basic Transformations
Apache Spark using Python – Joining Data Sets
Apache Spark using Python – Spark Metastore
Getting Started with Semi Structured Data using Spark
Process Semi Structured Data using Spark Data Frame APIs
Apache Spark – Development Life Cycle using Python
Spark Application Execution Life Cycle and Spark UI
Setup SSH Proxy to access Spark Application logs
Deployment Modes of Spark Applications”

单击此处获得 95% OFF 折扣,当您单击时将自动应用折扣

2. “Data Engineering – ETL, Web Scraping ,Big Data,SQL,Power BI” 经过 Bluelime Learning Solutions Udemy课程

“Hands on Data Interaction using – ETL, Web Scraping ,Big Data,SQL,Power BI”

截至目前,超过 24966+ 人们已经注册了这门课程,而且已经结束了 267+ 评论.

课程内容
“ETL (Extract, Transform ,Load) environment setup
Implementing ETL Process with SSIS
Data Interaction with SQL (Transact-SQL)
Web Scraping
Installing Required Software for Web Scraping
Web Scraping with Python and Beautiful Soup
Web Scraping with Python and Scrapy
Introduction to Big Data
Data Interaction with Power BI
Connecting to Web Data with Power BI
Connecting and transforming database data with Power BI
Data Modelling with Power BI”

单击此处获得 95% OFF 折扣,当您单击时将自动应用折扣

3. Data Engineering using AWS Data Analytics Services 经过 “Durga Viswanatha Raju Gadiraju, Asasri Manthena, Perraju Vegiraju” Udemy课程

“Build Data Engineering Pipelines using AWS Data Analytics Services such as Glue, EMR, Athena, Kinesis, Lambda, etc”

截至目前,超过 7995+ 人们已经注册了这门课程,而且已经结束了 661+ 评论.

课程内容
“Introduction to the course
Setup Local Development Environment for AWS on Windows 10 or Windows 11
Setup Local Development Environment for AWS on Mac
Setup Environment for Practice using Cloud9
AWS Getting Started with s3, IAM and CLI
Storage -Deep Dive into AWS Simple Storage Service aka s3
AWS Security using IAM – Managing AWS Users, Roles and Policies using AWS IAM
Infrastructure – Getting Started with AWS Elastic Cloud Compute aka EC2
Infrastructure – AWS EC2 Advanced
Data Ingestion using Lambda Functions
Overview of Glue Components
Setup Spark History Server for Glue Jobs
Deep Dive into Glue Catalog
Exploring Glue Job APIs
Glue Job Bookmarks
Getting Started with AWS EMR
Development Lifecycle for Pyspark
Deploying Spark Applications using AWS EMR
Streaming Pipeline using Kinesis
Consuming Data from s3 using boto3
Populating GitHub Data to Dynamodb
Overview of Amazon Athena
Amazon Athena using AWS CLI
Amazon Athena using Python boto3
Getting Started with Amazon Redshift
Copy Data from s3 into Redshift Tables
Develop Applications using Redshift Cluster
Redshift Tables with Distkeys and Sortkeys
Redshift Federated Queries and Spectrum”

单击此处获得 95% OFF 折扣,当您单击时将自动应用折扣

4. Data Engineering using Databricks on AWS and Azure 经过 “Durga Viswanatha Raju Gadiraju, Asasri Manthena” Udemy课程

“Build Data Engineering Pipelines using Databricks core features such as Spark, Delta Lake, cloudFiles, etc.”

截至目前,超过 6452+ 人们已经注册了这门课程,而且已经结束了 446+ 评论.

课程内容
Introduction to Data Engineering using Databricks
Getting Started with Databricks on Azure
Azure Essentials for Databricks – Azure CLI
Mount ADLS on to Azure Databricks to access files from Azure Blob Storage
Getting Started with Databricks on AWS
AWS Essentials for Databricks – Setup Local Development Environment on Windows
AWS Essentials for Databricks – Setup Local Development Environment on Mac
AWS Essentials for Databricks – Overview of AWS Storage Solutions
AWS Essentials for Databricks – Overview of AWS s3 and IAM Roles for Databricks
AWS Essentials for Databricks – Integrating AWS s3 and Glue Catalog
Setup Local Development Environment for Databricks
Using Databricks CLI
Spark Application Development Life Cycle
Databricks Jobs and Clusters
Deploy and Run Spark Applications on Databricks
Deploy Spark Jobs using Notebooks
Deep Dive into Delta Lake using Spark Data Frames on Databricks
Deep Dive into Delta Lake using Spark SQL on Databricks
Accessing Databricks Cluster Terminal via Web as well as SSH
Installing Softwares on Databricks Clusters using init scripts
Quick Recap of Spark Structured Streaming
Incremental Loads using Spark Structured Streaming on Databricks
Incremental Loads using autoLoader Cloud Files on Databricks
Overview of Databricks SQL Clusters

单击此处获得 95% OFF 折扣,当您单击时将自动应用折扣

5. Azure Data Factory for Beginners – Build Data Ingestion 经过 David Charles Academy Udemy课程

Learn Azure Data Factory by building a Metadata-driven Ingestion Framework as an industry standard

截至目前,超过 4080+ 人们已经注册了这门课程,而且已经结束了 441+ 评论.

课程内容
Inroduction – Build your first Azure Data Pipeline
Metadata Driven Ingestion
Event Driven Ingestion

单击此处获得 95% OFF 折扣,当您单击时将自动应用折扣

6. Data Engineering on Google Cloud platform 经过 Siddharth Raghunath Udemy课程

“End to end batch processing,data orchestration and real time streaming analytics on GCP”

截至目前,超过 3527+ 人们已经注册了这门课程,而且已经结束了 406+ 评论.

课程内容
“Introduction and Overview
Batch Processing and ETL using BigQuery,Spark and Airflow / Google composer
Batch Data ingestion using Apache Sqoop and Apache Airflow / Google Composer
Kafka Crash Course
Real-Time Streaming and Analytics using Spark Structured Streaming with Kafka
Real-Time Streaming with streaming files as source of data with IOT sensor data
Update – BigQuery / CLoudSql – Federated Queries”

单击此处获得 95% OFF 折扣,当您单击时将自动应用折扣

7. Data Engineering on Microsoft Azure: The Definitive Guide 经过 Wadson Guimatsa Udemy课程

“Hands-On Introduction to Azure Data Services. Learn Data Factory, Synapse Analytics, SQL Database, and more”

截至目前,超过 1346+ 人们已经注册了这门课程,而且已经结束了 138+ 评论.

课程内容
Introduction – Understanding Core Data Concepts
Azure SQL – Introduction
Azure Blob Storage – Introduction
Azure Data Factory – Core Concepts
Practice Section: Build an ETL Pipeline with Azure Data Factory
Azure Synapse Analytics – Serverless SQL pool
Azure Synapse Analytics – Serverless Apache Spark pool
Azure Synapse Analytics – Dedicated SQL Pool

单击此处获得 95% OFF 折扣,当您单击时将自动应用折扣

8. Data Engineering using Kafka and Spark Structured Streaming 经过 Durga Viswanatha Raju Gadiraju Udemy课程

A comprehensive Data Engineering course on building streaming pipelines using Kafka and Spark Structured Streaming

截至目前,超过 971+ 人们已经注册了这门课程,而且已经结束了 56+ 评论.

课程内容
Introduction
Getting Started with Kafka
Data Ingestion using Kafka Connect
Overview of Spark Structured Streaming
Kafka and Spark Structured Streaming Integration
Incremental Loads using Spark Structured Streaming
Setting up Environment using AWS Cloud9
Setting up Environment – Overview of GCP and Provision Ubuntu VM
Setup Single Node Hadoop Cluster
Setup Hive and Spark
Setup Single Node Kafka Cluster

单击此处获得 95% OFF 折扣,当您单击时将自动应用折扣

9. Data Engineering with Python 经过 Academy of Computing & Artificial Intelligence Udemy课程

Learn the skills to become a Data Scientist [ Data Science A – Z ]

截至目前,超过 351+ 人们已经注册了这门课程,而且已经结束了 44+ 评论.

课程内容
Setting up Python
Python Theory
Software Design
Python Tutorials
Setting up the Environment for Machine Learning
Understanding Data With Statistics & Data Pre-processing
Data Visualization with Python
Artificial Neural Networks [Comprehensive Sessions]Naive Bayes Classifier with Python [Lecture & Demo]Linear regression
Logistic regression
Introduction to clustering [K – Means Clustering ]Extra Reading

单击此处获得 95% OFF 折扣,当您单击时将自动应用折扣

10. Learn AWS Data Engineering 经过 Tushar Bhalla Udemy课程

ETL & BI on AWS Cloud

截至目前,超过 204+ 人们已经注册了这门课程,而且已经结束了 47+ 评论.

课程内容
Introduction
Data Engineering Services
Live Demos

单击此处获得 95% OFF 折扣,当您单击时将自动应用折扣

下面是一些关于学习的常见问题数据工程

学习数据工程需要多长时间?

“学习数据工程需要多长时间”这个问题的答案是。 . .这取决于。每个人都有不同的需求,每个人都在不同的场景下工作,所以一个人的答案可能与另一个人的答案完全不同。

考虑这些问题:你想学习 数据工程 是为了什么?你的出发点在哪里?您是初学者还是有使用 数据工程 的经验?你能练习多少?每天1小时?每周40小时? 查看本课程关于 数据工程.

数据工程 学起来容易还是难?

不,学习 数据工程 对大多数人来说并不难。检查这个 关于如何学习的课程 数据工程 立刻!

如何快速学习数据工程?

学习 数据工程 最快的方法是先得到这个 数据工程 课程, 然后尽可能练习你学到的任何东西。即使每天只有 15 分钟的练习。一致性是关键.

在哪里学习 数据工程?

如果您想探索和学习 数据工程,那么 Udemy 为您提供了学习 数据工程 的最佳平台。查看此 关于如何学习的课程 数据工程 立刻!